-:\“'."c'

Bilkent University
\\\‘",/// Department of Computer Engineering

CS353 Database Systems
Social Network for Check-In - CheckMe

Project URL: http://bit.ly/CS353DB

Project Design Report

Ahmet Candiroglu, Albjon Gjuzi, Aurel Hoxha, Eniselda Tusku

Supervisor: Fuat Basik

Feb 26, 2018

This report is submitted to the Department of Computer Engineering of Bilkent University in partial fulfillment of
the requirements of the Database Systems, course CS353.

Table of Contents

1. Revised E/ R Model

2. Relation Schemas

2.1. Country

2.2. State

2.3. City

2.4. Category

2.5. Venue

2.6. Feature

2.7. Cat_Venue
2.8. Privilege

2.9. UserType
2.10. Type_Privilege
2.11. User_Table
2.12. Prefers
2.13. Messages
2.14. Friends
2.15. Suggestion
2.16. PlanToVisit
2.17. HasFavorite
2.18. CheckIn
2.19. Photo

2.20. Review
2.21. Comment
2.22. User_Like

3. Functional Dependencies and Normalization of Tables

4. Functional Components

4.1. Use Cases/ Scenarios
4.2. Algorithms
4.3. Data Structures

5.

6.

7.

User Interface Design And Corresponding SQL Statements

5.1. Signup
5.2. Login
5.3. Friends

5.4. Messages

5.5. User Preference

5.6. Venue

5.7. Check In

5.8. Suggestion

5.9. Comment

5.10. User

5.11. PlanToVisit

5.12. HasFavorite

5.13. Edit User Profile

5.14. Edit Venue Profile

5.15. Users Rating To Venue

5.16. Search for a Venue
Advance Database Components

6.1. Views

6.2. Stored Procedures

6.3. Profile Reports

6.4. Triggers

6.5. Constraints

Implementation Plan

34
34
35
36
37
38
39
39
41
42
43
44
45
46
47
48
49
50
50
50
51
52
53
53

1. Revised E/ R Model

According to assistant feedback, we revised the E/R Model as follows:

e The names of the relationships were changed in order to have no relationships with
the same name.

e All missing total participation as in case of (country_state, state_city, city_venue)
were fixed.

o The entity of the feature was changed from a normal one to a weak one. We realized
that a feature does not exist if a venue does not.

e The is-a-relationship between user and manager was removed and updated using a
roleld that indicate the type of the user such as (user, admin, manager).

o The relationship between venue and user was changed from 1-to-1 to 1-to-many
considering the fact that a user that is manager can manages more than 1 venue.

o CheckIn was converted from a relationship to an entity and the required
relationships were added.

e Comment was converted from a relationship to an entity and the required
relationships were added.

e The lists inside the entities were removed and substituted with other relationships.

The E/R diagram was completed adding the following modification:

o Review entity was added and it has a 1-to-1 relationship with CheckIn considering
the fact that a review corresponds only to one checkln.

e Suggestion entity was added to provide a way for the user to send suggestions to
different venues.

e UserType and Privilege entities were added such that provide a way to maintain
different privileges for different types of user.

¢ Photo entity was added as e weak entity to CheckIn. The reason for this is because it
1s in user preferences whether or not to merge a photo with the ChecklIn.

e Comment entity was added and a relationship that connect the CheckIn and the
user was added.

e A relationship that contains the likes of different user to different checkIn-s was
added.

¢ Friends relationship between two different users was added to contain the list of
friends for different user.

o Message relationship between two different user was added to save the messages

conl

countrylD statelD citylD venuelD commentiD
countryName stateName cityName. venueName comment_text
countryCode stateCode cityStatus venueDesc comment_date
countryStatus stateStatus venueAddress
venueStreet
street_number ¢ venue_checkin
Category
street_name
categorylD
venueCreated
categoryName
venueModified
categoryDesc Checkin
venueStatus
Featu —
categoryCreated : checkinID
venue_open_time
featureName
categoryModified i
venue_close_time checkin_date
featureDesc
categoryStatus. -
venuePicture
photo_checkin
enue_sugges manages
Suggestion
) User_Table
suggestionD
_ userlD vz
suggestion_text
user_firstName i
suggestion_date 2 LAt photolD
user_lastName § .
review_rating photo_url
oersugeest > user_email
S review_desc
user_password
user_birthday
reclever i
user_pic
sender_ig———
user_gender
sender—
city
el UserType recelver
il _ user_profileType
privilegelD GLED user_created
type_privileges
privilege_name e user_isActive
privilege_desc type_isActive user_lastlogin
privilege_value type_groupid

age()

2. Relation Schemas

2.1. Country
Relational Mode:

Country(countryID, countryName, countryCode, countryStatus)

Functional Dependencies:

countryID -> countryName countryCode countryStatus

Candidate Keys:

{(countryID)}

Normal Form:

BCNF

Table Definition:

CREATE TABLE country (
countryID int PRIMARY KEY AUTO_INCREMENT,
countryName varchar(40) NOT NULL,
countryCode varchar(10) NOT NULL,
countryStatus int NOT NULL)

ENGINE=InnoDB;

2.2. State
Relational Mode:

State(statelD, stateName, stateCode, stateStatus, countryID)
Functional Dependencies:
statelD -> stateName stateCode stateStatus countrylD
Candidate Keys:
{(stateID)}
Normal Form:
BCNF
Table Definition:
CREATE TABLE state (
stateID int PRIMARY KEY AUTO_INCREMENT,
stateName varchar(40) NOT NULL,
stateCode varchar(10) NOT NULL,
stateStatus int NOT NULL,
countryID int NOT NULL,
FOREIGN KEY(countryID) references country)

ENGINE=InnoDB;

2.3. City
Relational Mode:

City(cityID, cityName, cityStatus, stateID)

Functional Dependencies:

cityID -> cityName cityStatus statelD

Candidate Keys:

{(cityID)}

Normal Form:

BCNF

Table Definition:

CREATE TABLE city (
cityID int PRIMARY KEY AUTO_INCREMENT,
cityName varchar(40) NOT NULL,
cityStatus int NOT NULL,
stateID int NOT NULL,
FOREIGN KEY(stateID) references state)

ENGINE=InnoDB;

2.4. Category
Relational Mode:

Category(categoryID, categoryName, categoryDesc, categoryCreated,
categoryModified, categoryStatus)

Functional Dependencies:

categorylD -> categoryName categoryDesc categoryCreated categoryModified
categoryStatus

Candidate Keys:

{(categoryID)}

Normal Form:

BCNF

Table Definition:

CREATE TABLE category (
categorylD int PRIMARY KEY AUTO_INCREMENT,
categoryName varchar(40) NOT NULL,
categoryDesc varchar(150),
categoryCreated date NOT NULL,
categoryModified date NOT NULL,
categoryStatus int NOT NULL)

ENGINE=InnoDB;

2.5. Venue
Relational Mode:

Venue(venuelD,venueName,venueDesc,street_number, street_name, venueCreated,
venueModified, venueStatus, venue_open_time, venue_close_time,
venue_picture, cityID, managerID)

Functional Dependencies:

venuelD -> venueName venueDesc street_number street_name venueCreated
venueModified venueStatus venue_open_time venue_close_time
venue_picture citylD managerID

Candidate Keys:
{(venuelD)}
Normal Form:

BCNF

Table Definition:
CREATE TABLE venue (
venuelD int PRIMARY KEY AUTO_INCREMENT,
venueName varchar(40) NOT NULL,
venueDesc varchar(150),
street_number int,
street_name varchar(40),
venueCreated date NOT NULL,
venueModified date NOT NULL,
venue_open_time time,
venue_close_time time,
venue_picture blob,
venueStatus int NOT NULL,
cityID int NOT NULL,
managerlD int,
FOREIGN KEY(cityID) references city,
FOREIGN KEY(managerID) references user_table(UserID))
ENGINE=InnoDB;

10

2.6. Feature
Relational Mode:

Feature(VenuelD, featureName, featureDesc)

Functional Dependencies:

VenuelD featureName -> featureDesc

Candidate Keys:

{(VenuelD, featureName)}

Normal Form:

BCNF

Table Definition:

CREATE TABLE feature (
venuelD int,
featureName varchar(40),
featureDesc varchar(50) NOT NULL,
PRIMARY KEY(venuelD, featureName),
FOREIGN KEY(venuelD) references venue)

ENGINE=InnoDB;

11

2.7. Cat_Venue
Relational Mode:

Cat_Vanue(categoryID, venuelD)

Functional Dependencies:

Candidate Keys:

{(categoryID, venuelD)}

Normal Form:

BCNF

Table Definition:

CREATE TABLE cat_venue (
categorylD int,
venuelD int,
PRIMARY KEY(categoryID, venuelD),
FOREIGN KEY(categoryID) references category,
FOREIGN KEY(venuelD) references venue)

ENGINE=InnoDB;

12

2.8. Privilege
Relational Mode:

Privilege(privilegelD, privilege_name, privilege_desc, privilege_value)

Functional Dependencies:

privilegelD -> privilege_name privilege_desc privilege_value

Candidate Keys:

{(privilegeID)}

Normal Form:

BCNF

Table Definition:

CREATE TABLE privilege (
privilegelD int PRIMARY KEY AUTO_INCREMENT,
privilege_name varchar(40) NOT NULL,
privilege_desc varchar(150) NOT NULL,
privilege_value varchar(50) NOT NULL)

ENGINE=InnoDB;

13

2.9. UserType
Relational Mode:

UserType(typelD, typeName, type_isActive, type_groupid)
Functional Dependencies:
typelD-> typeName type_isActive type_groupid
Candidate Keys:
{(typeID)}
Normal Form:
BCNF
Table Definition:
CREATE TABLE usertype (
typelD int PRIMARY KEY AUTO_INCREMENT,
typeName varchar(40) NOT NULL,
type_isActive int NOT NULL,
type_groupid int NOT NULL)

ENGINE=InnoDB;

14

2.10. Type_Privilege
Relational Mode:

Type_Privilege (typelD, privilegeID)

Functional Dependencies:

Candidate Keys:

{(typelD, privilegeID)}

Normal Form:

BCNF

Table Definition:

CREATE TABLE type_privilege (
typelD int,
privilegelD int,
PRIMARY KEY(typelD, privilegeID),
FOREIGN KEY(typelD) references usertype,
FOREIGN KEY (privilegeID) references privilege)

ENGINE=InnoDB;

15

2.11. User _Table
Relational Mode:

User_Table(userID, user_firstName, user_lastName, user_email, user_password,
user_birthdate, user_pic, user_gender, city, user_profileType, user_created,
user_isActive, user_lastlogin, typelD)

Functional Dependencies:

userlD -> user_firstName user_lastName user_email user_password
user_birthdate user_pic user_gender city user_profileType
user_created user_isActive user_lastlogin typelD
Candidate Keys:

{(userID,user_email)}

Normal Form:

BCNF
Table Definition:

CREATE TABLE user_table (
userID int PRIMARY,
user_firstName varchar(50) NOT NULL,
user_lastName varchar(50) NOT NULL,
user_email varchar(100),
user_password varchar(30) NOT NULL,
user_birthdate date NOT NULL,
user_pic blob,
user_gender character(1) NOT NULL,
city varchar(50) NOT NULL,
user_profileType int NOT NULL,
user_created date NOT NULL,
user_isActive int NOT NULL,
user_lastlogin time NOT NULL,
typelD int NOT NULL,
FOREIGN KEY (typelD) references usertype)
ENGINE=InnoDB:;

16

2.12. Prefers
Relational Mode:

Prefers(userID, categorylD)

Functional Dependencies:

Candidate Keys:

{(userID, categorylID)}

Normal Form:

BCNF

Table Definition:

CREATE TABLE prefers (
userlD int,
categorylD int,
PRIMARY KEY(userID, categoryID),
FOREIGN KEY (userID) references user_table,
FOREIGN KEY(categoryID) references category)

ENGINE=InnoDB;

17

2.13. Messages
Relational Mode:

Messages(userID1, userID2, message)

Functional Dependencies:
userID1 userID2 -> message
Candidate Keys:
{(userID1, userID2)}
Normal Form:
BCNF
Table Definition:
CREATE TABLE messages (
userID1 int,
userID2 int,
message varchar(500),
sent_date date,
PRIMARY KEY(userID1, userID2),
FOREIGN KEY(userID1) references user_table (userID),
FOREIGN KEY (userID2) references user_table (userID))

ENGINE=InnoDB;

18

2.14. Friends
Relational Mode:

Friends(userID1, userID2)

Functional Dependencies:
Candidate Keys:
{(userID1, userID2)}
Normal Form:
BCNF
Table Definition:
CREATE TABLE friends (
userID1 int,
userID2 int,
PRIMARY KEY(userID1, userID2),
FOREIGN KEY(userID1) references user_table (userID),

FOREIGN KEY(userID2) references user_table (userID))

ENGINE=InnoDB;

19

2.15. Suggestion
Relational Mode:

Suggestion(suggestionID, suggestion_text, suggestion_date, venuelD, userID)

Functional Dependencies:
suggestionlD -> suggestion_text suggestion_date venuelD userID
Candidate Keys:
{(suggestionID)}
Normal Form:
BCNF
Table Definition:
CREATE TABLE suggestion (
suggestionID int PRIMARY KEY AUTO_INCREMENT,
suggestion_text varchar(250) NOT NULL,
suggestion_date date NOT NULL,
venuelD int NOT NULL,
userID int NOT NULL,
FOREIGN KEY(venuelD) references venue,
FOREIGN KEY(userID) references user_table)

ENGINE=InnoDB;

20

2.16. PlanToVisit
Relational Mode:

PlanToVisit(userlD, venuelD)

Functional Dependencies:
Candidate Keys:
{(userID, venuelD)}
Normal Form:
BCNF
Table Definition:
CREATE TABLE plan_to_visit (
userlD int,
venuelD int,
PRIMARY KEY(userID, venuelD),
FOREIGN KEY (userID) references user_table,

FOREIGN KEY(venuelD) references venue)

ENGINE=InnoDB;

21

2.17. HasFavorite
Relational Mode:

HasFavorite(userID, venuelD)

Functional Dependencies:
Candidate Keys:
{(userID, venuelD)}
Normal Form:
BCNF
Table Definition:
CREATE TABLE has_favorite (
userlD int,
venuelD int,
PRIMARY KEY(userID, venuelD),
FOREIGN KEY (userID) references user_table,

FOREIGN KEY(venuelD) references venue)

ENGINE=InnoDB;

22

2.18. CheckIn
Relational Mode:

CheckIn(checkinID, checkin_date, userID, venuelD, reviewID)
Functional Dependencies:
checkinID -> checkin_date userID venuelD reviewID
Candidate Keys:
{(checkinID)}
Normal Form:
BCNF
Table Definition:
CREATE TABLE checkin (
checkinID int PRIMARY KEY AUTO_INCREMENT,
checkin_date date NOT NULL,
userID int NOT NULL,
venuelD int NOT NULL,
reviewID int NOT NULL,
FOREIGN KEY (userID) references user_table,
FOREIGN KEY(venuelD) references venue,
FOREIGN KEY(reviewID) references review)

ENGINE=InnoDB;

23

2.19. Photo
Relational Mode:

Photo(checkinID, photolD, photoFile)

Functional Dependencies:

checkinID photolD -> photoFile

Candidate Keys:

{(checkinID, photoID)}

Normal Form:

BCNF

Table Definition:

CREATE TABLE photo (
checkinID int,

photolD int,

photoFile blob NOT NULL,

PRIMARY KEY(checkinID,photoID),

FOREIGN KEY(checkinID) references checkin)

ENGINE=InnoDB;

24

2.20. Review
Relational Mode:

Review(reviewlD, review_rating, review_desc)

Functional Dependencies:

reviewlD -> review_rating review_desc

Candidate Keys:

{(reviewID)}

Normal Form:

BCNF

Table Definition:

CREATE TABLE review (
reviewID int PRIMARY KEY AUTO_INCREMENT,
review_rating int NOT NULL,
review_desc varchar(150))

ENGINE=InnoDB;

25

2.21. Comment
Relational Mode:

Comment(commentID, comment_text, comment_date, userID, checkinID)
Functional Dependencies:
commentID -> comment_text comment_date userID, checkinID
Candidate Keys:
{(commentID)}
Normal Form:
BCNF
Table Definition:
CREATE TABLE comment (
commentID int PRIMARY KEY AUTO_INCREMENT,
comment_text varchar(250) NOT NULL,
comment_date date NOT NULL,
userID int NOT NULL,
checkinID int NOT NULL,
FOREIGN KEY (userID) references user_table,
FOREIGN KEY(checkinID) references checkin)

ENGINE=InnoDB;

26

2.22. User_Like
Relational Mode:

User_Like(userID, checkinID)

Functional Dependencies:

Candidate Keys:

{(userID, checkinID)}

Normal Form:

BCNF

Table Definition:

CREATE TABLE user_like (
userID int NOT NULL,
checkinID int NOT NULL,
PRIMARY KEY(userID, checkinID),
FOREIGN KEY (userID) references user_table,
FOREIGN KEY(checkinID) references checkin)

ENGINE=InnoDB;

27

3. Functional Dependencies and Normalization of Tables
All functional dependencies and normal forms are indicated in Relation Schemas in Section

2 of this Project Design Report. First we check whether all our relations are in Boyce-Codd
normal form. We concluded that no decomposition is required.

28

4.

4.1.

Functional Components

Use Cases / Scenarios

In CheckMe Social Network, there will be two types of user, normal user and manager.

Since the admin will have total privileges it will not be included in the use cases. Manager

and Users have both similarities and differences and in order to use the system all user

have to log in into the system selecting the type of the account they want to create.

User

A user can sign up and register to our system using a unique email, password, and
selecting he is a simple user.

User can login to the system with the user ID and password.

User can access his profile page: which includes his first and last name, email
address, birthday, profile picture, gender and address.

User can change password from profile page.

User can make his profile private. (Public by default)

User can update the information of his profile.

User can make friends from other users.

User can search for venues based on country, state, or city.

User can search for venues based on venue category.

User can select features which the venues must have.

User can view the venue’s details which include venue name, description, address,
online-offline status, open time, close time and the rating determined by other users.
User can view previous check-ins at different venues together with the review.

User can check-in at venues and the check-in includes optional photos, a description
about user’s experience at the venue and a review of the venue which is composed of
a rating from 1-10 and a short description.

User can send suggestion to the venues.

Users can add friends.

User can like or comment check-ins of their friends or people whose profile is public.
User can have a list of check-ins of his friends and category preferences in
chronological order in his news feed.

User can send messages to his friends, or to people whose profile is public.

User can create and save a list of venues he plans to visit in the future.

User can recommend a venue to his friends.

User can deactivate his account.

29

Every use-case requires Registration and later Login to access the system. They are omitted for simplicity of the diagram.

User

-
- e
el

30

Manager

¢ A manager can sign up and register to our system using a unique email, password,
and selecting he is a manger.

e Manager can manage venues.

e Manager can create venues.

e Managers can update the information of the venues he manages which consist of
venue name, description, address, status, open time and close time.

e Manager can delete venues that he is managing from the system.

e Manager can also act as an ordinary user, which means check-in at different venues,
like and comment, add friends, sends messages to them and all other functionalities
that users have.

Every use-case requires Registration and later Login to access the system. They are omitted
for simplicity of the diagram.

Create Venues

Update Venues Information

Change Venue's status

Manager

See suggestions, comments
and reviews for his Venues

Add of Delete features
for the Venue

Delete Venue

31

4.2. Algorithms

Search Related Algorithm

All users interacting with the application can search through the website using keywords.
The user will firstly have to select what he is looking for. The options to be selected will be
Country, State, City, Venue and People.

The search algorithm will be different for all of these options. For example if user searches
for the country, all the states and cities in those states will be automatically selected.
Therefore, the venues that will be displayed will be those of the country he selected. The
same will be for the state, all the cities of the state will be automatically selected and the
venues displayed will all belong to the state searched from the user. To make searching
process easier for the user, after the first character for every character that the user enters
in the search box the options containing that keyword will be displayed below the text box.

News Feed Algorithm
The data management system will allow user to keep track of check-ins from their favorite
venues or from their favorite categories plus their friends.

In the news feed page there will be two checkboxes called categories and venues which will
be combined with the user’s friend’s check-ins. Besides the checkboxes there will be two
radio buttons called most recent and top. If the user selects most recent the algorithm will
be bases on chronological order, meanwhile if the user selects top we will display them the
posts with more likes and comments combined from the last 24 hours. Likes will affect 70%
of the algorithm and comments the rest 30%.

Rating Algorithm

Users in our system will have different impact in the review rating of the venues. There
will be a simple algorithm to make sure that the rating of the venue is closer to the value it
should really have.

The first issue with the rating algorithm is that the managers will be prevented from rating
the venues they manage, because this is not fair as they would definitely give a big 10 to
their venues. Besides the manager, all users’ will affect the overall rating in different ways.
Users with less than 5 review rating in total will have only 15% weight in the total rating,
users with more than 5 and less than 50 review ratings will have 35% weight in the total
rating and users with more than 50 review ratings will have the remaining 50% of the
weight.

32

Logical Requirements

In order to prevent logical errors inside our system, there will be a number of spots that the
system ought to approach in a sensitive manner. For example the open hours of a specific
venue should be followed carefully.

Two attributes in the venue table are venue_open_time and venue_close_time. Considering
the values of those attributes, the difference between them should be less than 24. For
example a venue cannot open at 16:00pm and close at 15:00pm. However, the open time can
be bigger than the close time. This will mostly occur in night clubs which can open at
20:00pm and close at 06:00am. Such restrictions are made in order to prevent mistakes
while entering the open and close hours of the venue.

Checking in at a venue should be atomic. This implies that the check-in will not be
uploaded to the database if the photos are not already uploaded. We will provide an

algorithm in order to make sure that the photos are uploaded together with the check-in
description.

4.3. Data Structures

For the attribute domains we will use Numeric type, Date type, Time type, Blob type and
other types that are supported from MySQL.

33

5. User Interface Design And Corresponding SQL Statements

5.1. Signup

Inputs: @first_name, @last_name, @email_address, @username, @password,
@birthday, @gender, @city, @profile_type

Process: The user enter his information to register to CheckMe System. The
information include user’s first name, last name, email, username, password, date
of birth, gender, city and the account type.

SQL Statement:
Registering
INSERT INTO user_table

VALUES(@username, @first_name, @last_name, @email address, @password,
@birthday, NULL, @gender, @city, @profile_type, NOW(), 1, NOW(

34

5.2. Login

Member Login

= Username

& Password

Forgot Username | Password?

Create your Account —

Inputs: @username, @password

Process: The user enter his username and his password to enter to the CheckMe
System.

SQL Statement:
Logging in
SELECT userlID, password

FROM user_table
WHERE userID = @username AND password = @password

35

5.3. Friends

= My Friends

e Jack Newman

e Mark Olsen

e Tom Anderson
e Mary Spencer

e Aurel Hoxha

e Albjon Gjuzi

e Eniselda Tusku
e Ahmet

e Arba Hoxha

e Skerd Xhafa

e Andi Bardulla

e Fuat Basik

e Emily Blunt

Inputs: @username

Process : When a user open the friends screen, all his friends will be listed without
any filter.

@username: Is the username of the user who is currently signed in.

SQL Statement:

SELECT friends.userID2

FROM friends

WHERE friends.userID1 = @username

36

5.4. Messages

= My Messages

Aurel Hoxha B4

Hey. where are you? How was the italian
restaurant last night? Did it match the
reviews?

Mark Olsen B4

Hey. | would love to go scmewhere nice for
the holidays. Any suggestion?

Albjon Gjuzi £4

| saw that you wrote a very good review for
the restaurant near the beach. Was it that
good?

Inputs: @username

Process : When a user open the messages screen, all his messages will be displayed

@username: Is the username of the user who is currently signed in.

SQL Statement:

SELECT messages.userID2, messages.text, message.sent_date
FROM messages

WHERE messages.userID1 = @username

GROUP BY messages.userID2

37

5.5. User Preference

My Preferences

Restaurants

Night Life
Wine Bars
Resorts

Sport Centers

Spa

S < I <R

Fast Food

Inputs: @username

Process : When a user open the preference screen, all his preferences will be
displayed.

@username: Is the username of the user who is currently signed in.

SQL Statement:

SELECT prefers.categorylD

FROM prefers

WHERE friends.userID = @username

38

5.6. Venue

Social Network Venues Users Categories Search. 2 Ahmet
41 Pi IlF Featuring (22 GIIT) CEI) CETED Pizza Il Forno
1Zza orno ® Checkin B Feedback Bilkent Station (Universiteler

Mah. 1597. Cad. No:3)

Jean, 22 February 2015 & 7 06800 Gankaya

Turkiye

Pizzalar anlatilchgn gibi muhtesem. Tavuk Sezar

pizza ve Fime Kaburga efsane. Keske Open: 10:30-23:00

Nutellali Pizzaya da yer kalsayd. Bilkent Station

icinde gizel bir yer olmus Tel: +90 312 266 03 02
Joined in 11 June 2013

PIZZA
IL FORNO

Sefa, 5 September 2015 & 5 9
Bildiginiz klise mekanlan unutununt il F
gergekten pizza yemek isteyenler igin bir numara
olmall. Galisanlar, ilgi, alaka, sunum harika. Ayrica

You would not imagine there would be this
many good pizza types; but there is.

fiyatlarda cok uygun. Not kigiik boy gayet
doyurucu.

Inputs: @userlD, @venuelD

Process: Venue page displays all the information about that Venue and Review’s done about
that Venue. Users can Check In, Review and give Feedback (Suggestion) to the Venue.

@userlD: ID of the user signed in.
@venuelD: ID of the venue which is being displayed.

SQL Statements:
Loading Venue information

SELECT V.venueName, V.venueDesc, V.venue_picture, V.street_number, V.street name,
V.venueCreated, V.venue_open_time, V. venue_close_time,
Category.categoryName, City.cityName, S.stateName, Country.countryName

FROM Venue V, Country CO, State S, City Cl, Category CA, Cat_Venue

WHERE V.venuelD = venuelD and V.cityID = Cl.citylID and Cl.statelD = S.statelD
and S.countrylD = CO.countrylD and CA.categorylD = Cat_Venue.categorylD
and venuelD = Cat_Venue.venuelD

Loading Feature information

SELECT F.featureName
FROM Venue V, Feature F
WHERE venuelD = V.venuelD and F.venuelD = venuelD

Loading Check In and Review Information

SELECT U.user_first_name, C.checkin_date, C.checkin_like_num, R.review_desc,
P.photoFile

FROM Venue V, Checkin C, Review R, User U, Photo P

WHERE venuelD = V.venuelD and C.venuelD = venuelD and C.reviewID = R.reviewID

and P.checkinID = C.checkinlD

39

5.7. Check In

Social Network Venues Users Categories Search 2 Ahmet

Featuring (G2 GIII) CETI) Pizza Il Forno
@ Check In Bilkent Station (Universiteler
Mah. 1597. Cad. No:3)
06800 Gankaya
Tarkiye

1 Pizza Il Forno

Check In to Pizza Il Forno

Add a review Open: 10:30-23:00

Tel: +90 312 266 03 02
Rate Y77 W W W

Joined in 11 June 2013

Write what you think

Add pictures

Dosya Seg |Dosya segilmedi

Check In!

You would not imagine there would be this

many good pizza types; but there is.

LIELERVET | 9g.2a.yyyy

Inputs: @userID, @venuelD, @reviewDesc, @rating, @photoFile, @date

Process: User can check in and add review if he/she wants. If the user does not want to add
review to the check in only check in will be created. Note that this display is not a new
page, it is Venue page when Check In button is pressed.

@userID: ID of the signed in user

@venuelD: Venue which is currently being displayed
@reviewDesc, @rating and @photoFile: Input of user to add review
@date: Date of check in which is taken from the server

SQL Statements:
Adding Review (If the User wants to add)

INSERT INTO Review (reviewID, review_rating, review_desc)
VALUES (@reviewID, @rating, @reviewDesc)

Adding Check In
INSERT INTO CheckIn(checkinID, checkin_date, userID, venuelD, reviewID)
VALUES (@checkInID, @date, @userID, @venuelD, @reviewID)

40

5.8. Suggestion

Social Network ~ Venues Users Categories Search. 2 Ahmet

Featuring (220 G0 CEI) pizza l Forno
M Feedback Bilkent Station (Universiteler
Mah. 1597. Cad. No:3)
06800 Cankaya
Tiirkiye

¥ Pizza Il Forno

@)

Give a Suggestion to Pizza Il Forno

Open: 10:30-23:00
Write how can we improve
Tel: +90 312 266 03 02

ourselves.

Joined in 11 June 2013

PIZZA
IL FORNO

You would not imagine there would be this
many good pizza types; but there is

o

Inputs: @userID, @venuelD, @text, @date

Process: User can give suggestions to the Venue which will be only shown to Venue
managers, it won’t be public. Note that this display is not a new page, it is Venue page
when Feedback button is pressed.

@userID: ID of the signed in user

@venuelD: Venue which is currently being displayed
@text: Input of user to add suggestion

@date: Date of suggestion which is taken from the server

SQL Statements:
Adding Suggestion
INSERT INTO Suggestion (suggestionID, suggestion_text, suggestion_date, venuelD,

userID)
VALUES (@suggestionlD, @text, @date, @venuelD, @userID)

41

5.9. Comment

Gokee, 22 February 2015 i 7§

Pizzalar anlatildigi gibi muhtesem. Tavuk Sezar
pizza ve Fime Kaburga efsane. Keske

Nutellal Pizzaya da yer kalsaydi. Bilkent Station
icinde gtizel bir yer olmus.

Halil, 23 February 2015

Afiyet olsun :) Katiliyorum, yedigim en iyi
fume kaburga pizzayd.

Add a comment...

Inputs: @userID, @checkInID, @text, @date

Process: User can comment on check-ins of people which includes only a text. Note that this display can
be shown in user profile page, home screen and venue profile; this is not a separate page.

@userlD: ID of the signed in user

@checkInID: Check in to comment on

@text: Input of user to add comment

@date: Date of comment which is taken from the server

SQL Statements:
Adding Comment

INSERT INTO Comment (commentID, comment_text, comment_date, userlD, checkinID)
VALUES (@commentID, @text, @date, @userID, @checkInID)

42

5.10. User

Social Network Venues Users Categories Search a Ahmet

Preferences ([() (TTD 207 Friends

Jean Database ° 6 ﬁ
e

Reviewed Pizza Il Forno (LA
22 February 2015 See all friends

Pizzalar anlatildign gibi muhtesem. Tavuk Sezar Latest Photos
pizza ve Fiime Kaburga efsane. Keske

Nutellali Pizzaya da yer kalsaydi. Bilkent Station

icinde gtizel bir yer olmus.

k‘- “

i

‘L“Eé‘% :
it

m : -’

- | ‘i!

‘/g i/

Checked In Kebab4Life LR

10 February 2015

About me
I like pizza.

Born in 12 April

Joined in 4 February 2014

Inputs: @userProfileID, @userID, @messageText

Process: User profile page displays all the information about that User and Review’s he/she
has done. Currently signed in User can add viewed person as a friend, send a message and
like/comment on his/her check-ins.

@userlID: ID of the user signed in.

@userProfileID: ID of the venue which is being displayed.
SQL Statements:

Loading User information

SELECT U.user_first_name, U.user_last_name, U.user_picture, U.user_created
FROM User U
WHERE userProfileID = U.userID

Loading Check In and Review Information

SELECT U. user_first_name, C.checkin_date, C.checkin_like_numbers, R.review_desc,
P.photoFile

FROM Checkln C, Review R, User U, Photo P

WHERE userProfileID = U.userID and userProfileID = C.userID and C.reviewID =
R.reviewID and P.checkinID = C.checkinID

43

Loading Friends Information

SELECT Ul.user_picture
FROM User U1, (SELECT F.userID2 as friendID
FROM User U, Friends F
WHERE userProfileID = U.userID and userProfilelD =
F.userID1)
as friendList
WHERE Ul.userID = friendList.friendID

SELECT COUNT(*)
FROM User U, Friends F
WHERE userProfileID = U.userID and userProfileID = F.userID1

5.11. PlanToVisit

Plan To Visit

“"The Taste " &

Inputs: @username

Process : When a user open the
"Summer Resort” (£ PlanToVisit screen, all the venues
pasta di Pucci® (# that the user has planned to visit in a
near future will be displayed.
"Saphire Hotel* (&
= @username: Is the username of the

user who is currently signed in.

"Fameo”
"Wine o'Clock™” =

“Cinnabon” (24

SQL Statement:

SELECT PlanToVisit.venuelD

FROM PlanToVisit

WHERE PlanToVisit.userID = @username

44

5.12. HasFavorite

Favorite Venues

"La Vie en Rose’

“Italian Taste" <@
“Hotel Poseidon”
“Mon Cherie" Y
“Starbucks” Y
“Mozzart" <

7y

<o

“Burger King"

Inputs: @username

Process : When a user open the hasFavorite screen, all the favorite venues of the
user will be displayed on the screen. User than can remove any of the them if he/she

wants.

@username: Is the username of the user who is currently signed in.

SQL Statement:

SELECT HasFavorite.venuelD

FROM HasFavorite

WHERE HasFavorite.userID = @username

45

5.13. Edit User Profile

Edit Profile

First Name
Albjon
Last Name

Gjuzi

Date of Birth Gender

07/06/1997 Male

Contact Details
E-mail

albjon.gjuzi@bilkent.edu.tr
City

Durres

Cancel Save

Inputs: @username, @firstname, @lastname, @birthday, @gender, @email, @city

Process : When a user open the Edit User Profile screen, the user will be available
to change his basic information. He cannot edit the important information such as
username, or others.

@username: Is the username of the user who is currently signed in.
@firstname: The new value of the first name

@lastname: The new value of the last name

@birthday: The new value corresponding to the birthday of the user.
@gender: Saves the new gender of the user.

@email: Save the new email of the user.

@city: Save the new city of the user.

SQL Statement:

UPDATE user_table

SET user_firstName = @firstname, user_lastname = @lastname,
user_birthday = @birthday, user_gender = @gender, user_email = @email,
city = @city

WHERE user_table.userID = @username

46

5.14. Edit Venue Profile

Edit Venue

Venue Name

Bilka

Venue Description

Amazing place to spend time with your friends and eat delicious food too
Street Number Street Name

06800 Cankaya
Open Time Close Time

07:00 00:00

VenuePic

Uploaded Sep 16 T

Inputs: @username, @venuelD, @venueName, @venueDesc, @streetNumber,
@streetName, @open_time, @close_time, @picture

Process : When a manager open Edit Profile of the Venue he will have the
opportunity to change the information of the venue.

@username: Is the username of the user who is currently signed in.
@venuelD: Is the ID if the venue that the manager is editing.
@venueName: The new value of the venue name

@venueDesc: The new value of the venue description

@streetNumber: The new value corresponding to the venue street number
@streetName: The new value corresponding to the venue street name
@open_time: Save the new open time of the venue.

@close_time: Save the new close time of the venue.

@picture: Save the new picture for the venue profile.

SQL Statement:

UPDATE venue

SET venueName = @venueName, venueDesc = @venueDesc,
street_number = @streetNumber, street_name = @streetName,
venue_open_time = @open_time, venue_close_time = @close_time,
venuePicutre = @ picture

WHERE venuelD = @venuelD

47

5.15. Users Rating To Venue

All Reviews

Reviews for 17 March

March

17
Name Score(out of 10) Comment:
Eniselda 8 Good
Aurel 8 Fine
Ahmet 10 Perfect
Reviews for 16 March
March
16
Name Score(out of 10) Comment:
Albjon Gjuzi 7 Something needs to change here.

[+

Not the best I've had

Aurel Hoxha

©

Eniselda Tusku

Almost perfect.

Inputs: @username, @venuelD

Process : When a manager checks the reviews that the users have written for that
venue he has opened.

@username: Is the username of the user who is currently signed in.
@venuelD: Is the ID if the venue that the manager has opened

SQL Statement:

SELECT userlD, review_rating, review_desc
FROM checkin natural join review

WHERE venuelD = @venuelD

48

5.16. Search for a Venue

Country State Ankara Venue m

Name Address Open Close Rating

Bilka 06800 07:00 00:00 53

Bilkent University Main Campus

Speed Cafe 06800 09:00 21:30 84

Bilkent University Main Campus

Inputs: @username, @countryName, @stateName, @cityName, @venueName

Process : The process of searching for a venue based on the keywords given in the
boxes provided in the system.

@username: Is the username of the user who is currently signed in.
@countryName: The box to query entering the name of the country
@stateName: The box to query entering the name of the state
@cityName: The box to query entering the name of the city
@venueName: The box to query entering the name of the venue

SQL Statement:
SELECT venueName, venueDesc, venueAddress, venue_open_time,
venue_close_time
FROM venue natural join city natural join state natural join country
WHERE (
countryName likes @countryName or @countryName IS NULL

)
AND (
stateName likes @stateName or @stateName IS NULL
)
AND (
cityName likes @cityName or @cityName IS NULL
)
AND (
venueName likes @venueName or @venueName IS NULL
)

49

6. Advance Database Components

6.1. Views
Manager Suggestion View
This view restricts the manager to access user names that sent suggestions.

create view manager_suggestion as
select suggestionlD, suggestion_text, suggestion_date, venuelD
from suggestion

Manager Review View
This view restricts the manager to access user names that wrote the reviews.

create view manager_review as
select reviewRating, reviewDescription, checkin_date, venuelD
from checkin natural join review

6.2. Stored Procedures

The most important operations on our system will be adding venues and check-ins at
venues. Therefore, we can use some stored procedures to avoid using long queries all the
time.

This procedure will be used to add check-ins to the database.
Create Procedure addCheckin
(@checkinID int, @checkin_date date, @userID int, @venuelD int, @reviewID

int)
As
Begin

Insert Into checkin

Values (@checkinlD, @checkin_date, @userID, @venuelD, @reviewID)
End

This procedure will be used to add messages to the database.
Create Procedure addVenue

(@userID1 int, @userID2 int, @message varchar(500), @sent_date date)

As
Begin

Insert Into messages

Values (@userID1, @userID2, @message, @sent_date)
End

50

This procedure will be used to add venues to the database.

Create Procedure addUser
(@userID int, @user_firstName varchar(50), @user_lastName varchar(50), @user_email
varchar(100), @user_password varchar(30), @user_birthdate date, @user_pic blob,
@user_gender character(1), @city varchar(50), @user_profileType int, @user_created date,
@user_isActive int, @user_lastlogin time, @typelD int)

As
Begin
Insert Into user_table
Values (@venuelD, @venueName, @venueDesc, @street_number, @street_name,
@venueCreated, @venueModified, @venue_open_time, @venue_close_time,
@venueStatus int, @citylD, @managerID, @citylD, @managerID)
End

This procedure will be used to display the number of friends in user’s profile
Create Procedure countFriends as

Begin
(SELECT U.userlD, count(*)
FROM user_table U, friends F
WHERE U.userID = F.userID1
GROUP BY U.userID)

End

6.3. Profile Reports

Total number of check-ins uploaded by each user:
SELECT C.userID, count(*)

FROM checkin C

GROUP BY C.userlD;

Total number of suggestions sent from each user:
SELECT S.userID, count(*)

FROM suggestion S

GROUP BY S.userlD:;

Total number of venues for each category
SELECT CV.categorylD, CV.categoryName, count(*)
FROM cat_venue CV

GROUP BY CV.categoryID, CV.categoryName;

Total number of venues for each city
SELECT CV.cityID, count(*)

FROM city_venue CV

GROUP BY CV.citylD;

51

Total number of planToVisit venues for each user
SELECT C.userID, count(*)

FROM PlanToVisit P

GROUP BY P.userID;

Total number of planToVisit venues from each user
SELECT P.userlD, count(P.venuelD)

FROM PlanToVisit P

GROUP BY P.userID;

Total number of planned visits for all venues
SELECT P.venuelD, count(P.userID)

FROM PlanToVisit P

GROUP BY P.venuelD

6.4.

Triggers

When a check-in is deleted from system, review, photos and comments related with
this check-in are also deleted.

When a new category is inserted the total number will be increased and when a
category is deleted the total number will be decreased.

When a user likes or dislikes a check-in the corresponding number of total likes will
be updated and shown in the check-in.

When a user becomes friend with someone else the number of the friends in his
profile will increase and when he unfriends someone this number will decrease.
When a user gives a rating together with the check-in it will affect the overall rating
of the venue according to our algorithm.

When a user adds a check-in, it is shown in the user’s profile, venue’s profile and his
friend’s news feed.

When a user adds to his plan to visit list a particular venue it will automatically
increment the total number of plannedToVisit venues in the profile of the user and
when the user checks in at one of the venues in his plannedToVisit list it will
automatically be removed from there.

When a user deactivates the account all the information such as suggestions,
comments, likes, check-ins, messages will be removed from the system.

When a manager deletes a venue all the information regarding that venue such as
venue profile, check-ins, suggestions etc. will be removed from the system.

When a manger changes the status of the venue to offline, no other user besides the
manager can view the venue’s profile and the check-ins done there.

When a user sends a message, the message count in his friends profile and it will
remain like that until the friend responds.

When a user makes a review about a venue, it will increment the number of reviews
this user has made which will be later used in the algorithm about the venue rating.

52

6.5.

7.

Constraints

To enter the system a registration is required.

The system cannot be accessed without logging in.

All IDs of the system cannot be null.

Users can only log in using their username and password.

A user can check-in multiple times in a venue, but each check-in has only review.
There cannot be two same name categories.

A venue cannot have two same name features.

The suggestions are seen only from manager of the venue.

Users can only see profiles of their friends or of people whose profile is public.

Users can filter the data based on the available resources such as country, state, city
and category.

Users can edit only their profiles.

Users cannot remove comments of their friends from their check-ins.

A venue cannot be managed by more than one manager.

Deactivating the account and registering again with the same username and email
will not preserve the old information.

Implementation Plan

For the implementation plan we are planning to use MySQL Server at data layer in our

project as database management system. Furthermore, for the logic and user interface of

the project we are planning to code it in PHP and a use a small amount of JavaScript or

Node.js. The core of our system will be using MySQL and phpMyAdmin.

53

