
Bilkent University

CS353 Database Systems
Social Network for Check-In - CheckMe

Project URL: http://bit.ly/CS353DB

Project Design Report

Ahmet	Çandıroğlu,	Albjon	Gjuzi,	Aurel	Hoxha,	Eniselda	Tusku	

Supervisor:	Fuat	Basık	

	

	

	

Feb 26, 2018

This report is submitted to the Department of Computer Engineering of Bilkent University in partial fulfillment of
the requirements of the Database Systems, course CS353.

	

Department	of	Computer	Engineering

2

Table	of	Contents	
	
1.	 Revised E / R Model 4	
2.	 Relation Schemas 6	

2.1.	 Country 6	
2.2.	 State 7	
2.3.	 City 8	
2.4.	 Category 9	
2.5.	 Venue 10	
2.6.	 Feature 11	
2.7.	 Cat_Venue 12	
2.8.	 Privilege 13	
2.9.	 UserType 14	
2.10.	 Type_Privilege 15	
2.11.	 User_Table 16	
2.12.	 Prefers 17	
2.13.	 Messages 18	
2.14.	 Friends 19	
2.15.	 Suggestion 20	
2.16.	 PlanToVisit 21	
2.17.	 HasFavorite 22	
2.18.	 CheckIn 23	
2.19.	 Photo 24	
2.20.	 Review 25	
2.21.	 Comment 26	
2.22.	 User_Like 27	

3.	 Functional Dependencies and Normalization of Tables 28	
4.	 Functional Components 29	

4.1.	 Use Cases / Scenarios 29	
4.2.	 Algorithms 32	
4.3.	 Data Structures 33	

3

5.	 User Interface Design And Corresponding SQL Statements 34	
5.1.	 Signup 34	
5.2.	 Login 35	
5.3.	 Friends 36	
5.4.	 Messages 37	
5.5.	 User Preference 38	
5.6.	 Venue 39	
5.7.	 Check In 39	
5.8.	 Suggestion 41	
5.9.	 Comment 42	
5.10.	 User 43	
5.11.	 PlanToVisit 44	
5.12.	 HasFavorite 45	
5.13.	 Edit User Profile 46	
5.14.	 Edit Venue Profile 47	
5.15.	 Users Rating To Venue 48	
5.16.	 Search for a Venue 49	

6.	 Advance Database Components 50	
6.1.	 Views 50	
6.2.	 Stored Procedures 50	
6.3.	 Profile Reports 51	
6.4.	 Triggers 52	
6.5.	 Constraints 53	

7.	 Implementation Plan 53	
	

	

4

1. Revised E / R Model

According to assistant feedback, we revised the E/R Model as follows:

• The names of the relationships were changed in order to have no relationships with
the same name.

• All missing total participation as in case of (country_state, state_city, city_venue)
were fixed.

• The entity of the feature was changed from a normal one to a weak one. We realized
that a feature does not exist if a venue does not.

• The is-a-relationship between user and manager was removed and updated using a
roleId that indicate the type of the user such as (user, admin, manager).

• The relationship between venue and user was changed from 1-to-1 to 1-to-many
considering the fact that a user that is manager can manages more than 1 venue.

• CheckIn was converted from a relationship to an entity and the required
relationships were added.

• Comment was converted from a relationship to an entity and the required
relationships were added.

• The lists inside the entities were removed and substituted with other relationships.

The E/R diagram was completed adding the following modification:

• Review entity was added and it has a 1-to-1 relationship with CheckIn considering
the fact that a review corresponds only to one checkIn.

• Suggestion entity was added to provide a way for the user to send suggestions to
different venues.

• UserType and Privilege entities were added such that provide a way to maintain
different privileges for different types of user.

• Photo entity was added as e weak entity to CheckIn. The reason for this is because it
is in user preferences whether or not to merge a photo with the CheckIn.

• Comment entity was added and a relationship that connect the CheckIn and the
user was added.

• A relationship that contains the likes of different user to different checkIn-s was
added.

• Friends relationship between two different users was added to contain the list of
friends for different user.

• Message relationship between two different user was added to save the messages

5

User_TableUser_Table

CountryCountry StateState CityCity

CategoryCategory

FeatureFeature

CheckInCheckIn

PhotoPhotoReviewReview

CommentComment

SuggestionSuggestion

VenueVenue

UserTypeUserTypePrivilegePrivilege

userIDuserID

user_firstNameuser_firstName

user_lastNameuser_lastName

user_passworduser_password

user_birthdayuser_birthday

user_genderuser_gender

user_profileTypeuser_profileType

user_createduser_created

user_picuser_pic

friends
receiverreceiver

sendersender

messages

reciever_idreciever_id

sender_idsender_id

countryIDcountryID

countryNamecountryName

countryCodecountryCode

stateIDstateID

stateNamestateName

stateCodestateCode

cityIDcityID

cityNamecityName

cityStatuscityStatus

countryStatuscountryStatus stateStatusstateStatus

country_state state_city

city_venue

categoryIDcategoryID

categoryNamecategoryName

categoryDesccategoryDesc

categoryCreatedcategoryCreated

categoryModifiedcategoryModified

categoryStatuscategoryStatus

featureNamefeatureName
feature_venue

featureDescfeatureDesc

PlanToVisit

cat_venue

age()age()

checkinIDcheckinID

checkIn_datecheckIn_date

photoIDphotoID

photo_urlphoto_url

reviewIDreviewID

review_descreview_desc

review_ratingreview_ratingHasFavorite

commentIDcommentID

comment_textcomment_text

comment_datecomment_date

user_checkin

venue_checkin

photo_checkinreview_checkin

comment_checkin

suggestionIDsuggestionID

suggestion_textsuggestion_text

suggestion_datesuggestion_date

user_comment

venueIDvenueID

venueNamevenueName

venueDescvenueDesc

venueAddressvenueAddress

 venueStreet venueStreet

 street_number street_number

 street_name street_name

venueCreatedvenueCreated

venueModifiedvenueModified

venueStatusvenueStatus

venue_open_timevenue_open_time

venue_close_timevenue_close_time

user_emailuser_email

user_isActiveuser_isActive

manages

prefers

venue_suggest

user_suggest

user_lastloginuser_lastlogin

typeIDtypeID

typeNametypeName

type_isActivetype_isActive

type_groupidtype_groupid

type_privileges

privilegeIDprivilegeID

privilege_nameprivilege_name

privilege_descprivilege_desc

privilege_valueprivilege_value

user_type

user_like

citycity

Text

venuePicturevenuePicture

6

2. Relation Schemas

2.1. Country
Relational Mode:

Country(countryID, countryName, countryCode, countryStatus)

Functional Dependencies:

countryID -> countryName countryCode countryStatus

Candidate Keys:

{(countryID)}

Normal Form:

BCNF

Table Definition:

CREATE TABLE country (

countryID int PRIMARY KEY AUTO_INCREMENT,

countryName varchar(40) NOT NULL,

countryCode varchar(10) NOT NULL,

countryStatus int NOT NULL)

ENGINE=InnoDB;

7

2.2. State
Relational Mode:

State(stateID, stateName, stateCode, stateStatus, countryID)

Functional Dependencies:

stateID -> stateName stateCode stateStatus countryID

Candidate Keys:

{(stateID)}

Normal Form:

BCNF

Table Definition:

CREATE TABLE state (

stateID int PRIMARY KEY AUTO_INCREMENT,

stateName varchar(40) NOT NULL,

stateCode varchar(10) NOT NULL,

stateStatus int NOT NULL,

countryID int NOT NULL,

FOREIGN KEY(countryID) references country)

ENGINE=InnoDB;

8

2.3. City
Relational Mode:

City(cityID, cityName, cityStatus, stateID)

Functional Dependencies:

cityID -> cityName cityStatus stateID

Candidate Keys:

{(cityID)}

Normal Form:

BCNF

Table Definition:

CREATE TABLE city (

cityID int PRIMARY KEY AUTO_INCREMENT,

cityName varchar(40) NOT NULL,

cityStatus int NOT NULL,

stateID int NOT NULL,

FOREIGN KEY(stateID) references state)

ENGINE=InnoDB;

9

2.4. Category
Relational Mode:

Category(categoryID, categoryName, categoryDesc, categoryCreated,

 categoryModified, categoryStatus)

Functional Dependencies:

categoryID -> categoryName categoryDesc categoryCreated categoryModified

 categoryStatus

Candidate Keys:

{(categoryID)}

Normal Form:

BCNF

Table Definition:

CREATE TABLE category (

categoryID int PRIMARY KEY AUTO_INCREMENT,

categoryName varchar(40) NOT NULL,

categoryDesc varchar(150),

categoryCreated date NOT NULL,

categoryModified date NOT NULL,

categoryStatus int NOT NULL)

ENGINE=InnoDB;

10

2.5. Venue
Relational Mode:

Venue(venueID,venueName,venueDesc,street_number, street_name, venueCreated,

 venueModified, venueStatus, venue_open_time, venue_close_time,
 venue_picture, cityID, managerID)

Functional Dependencies:

venueID -> venueName venueDesc street_number street_name venueCreated

 venueModified venueStatus venue_open_time venue_close_time
 venue_picture cityID managerID

Candidate Keys:

{(venueID)}

Normal Form:

BCNF

Table Definition:
CREATE TABLE venue (

venueID int PRIMARY KEY AUTO_INCREMENT,
venueName varchar(40) NOT NULL,
venueDesc varchar(150),
street_number int,
street_name varchar(40),
venueCreated date NOT NULL,
venueModified date NOT NULL,
venue_open_time time,
venue_close_time time,
venue_picture blob,
venueStatus int NOT NULL,
cityID int NOT NULL,
managerID int,
FOREIGN KEY(cityID) references city,
FOREIGN KEY(managerID) references user_table(UserID))
ENGINE=InnoDB;

11

2.6. Feature
Relational Mode:

Feature(VenueID, featureName, featureDesc)

Functional Dependencies:

VenueID featureName -> featureDesc

Candidate Keys:

{(VenueID, featureName)}

Normal Form:

BCNF

Table Definition:

CREATE TABLE feature (

venueID int,

featureName varchar(40),

featureDesc varchar(50) NOT NULL,

PRIMARY KEY(venueID, featureName),

FOREIGN KEY(venueID) references venue)

ENGINE=InnoDB;

12

2.7. Cat_Venue
Relational Mode:

Cat_Vanue(categoryID, venueID)

Functional Dependencies:

Candidate Keys:

{(categoryID, venueID)}

Normal Form:

BCNF

Table Definition:

CREATE TABLE cat_venue (

categoryID int,

venueID int,

PRIMARY KEY(categoryID, venueID),

FOREIGN KEY(categoryID) references category,

FOREIGN KEY(venueID) references venue)

ENGINE=InnoDB;

13

2.8. Privilege
Relational Mode:

Privilege(privilegeID, privilege_name, privilege_desc, privilege_value)

Functional Dependencies:

privilegeID -> privilege_name privilege_desc privilege_value

Candidate Keys:

{(privilegeID)}

Normal Form:

BCNF

Table Definition:

CREATE TABLE privilege (

privilegeID int PRIMARY KEY AUTO_INCREMENT,

privilege_name varchar(40) NOT NULL,

privilege_desc varchar(150) NOT NULL,

privilege_value varchar(50) NOT NULL)

ENGINE=InnoDB;

14

2.9. UserType
Relational Mode:

UserType(typeID, typeName, type_isActive, type_groupid)

Functional Dependencies:

typeID-> typeName type_isActive type_groupid

Candidate Keys:

{(typeID)}

Normal Form:

BCNF

Table Definition:

CREATE TABLE usertype (

typeID int PRIMARY KEY AUTO_INCREMENT,

typeName varchar(40) NOT NULL,

type_isActive int NOT NULL,

type_groupid int NOT NULL)

ENGINE=InnoDB;

15

2.10. Type_Privilege
Relational Mode:

Type_Privilege (typeID, privilegeID)

Functional Dependencies:

Candidate Keys:

{(typeID, privilegeID)}

Normal Form:

BCNF

Table Definition:

CREATE TABLE type_privilege (

typeID int,

privilegeID int,

PRIMARY KEY(typeID, privilegeID),

FOREIGN KEY(typeID) references usertype,

FOREIGN KEY(privilegeID) references privilege)

ENGINE=InnoDB;

16

2.11. User_Table
Relational Mode:

User_Table(userID, user_firstName, user_lastName, user_email, user_password,
 user_birthdate, user_pic, user_gender, city, user_profileType, user_created,
 user_isActive, user_lastlogin, typeID)

Functional Dependencies:

userID -> user_firstName user_lastName user_email user_password
 user_birthdate user_pic user_gender city user_profileType
 user_created user_isActive user_lastlogin typeID
Candidate Keys:

{(userID,user_email)}

Normal Form:

BCNF

Table Definition:

CREATE TABLE user_table (

userID int PRIMARY,
user_firstName varchar(50) NOT NULL,
user_lastName varchar(50) NOT NULL,
user_email varchar(100),
user_password varchar(30) NOT NULL,
user_birthdate date NOT NULL,
user_pic blob,
user_gender character(1) NOT NULL,
city varchar(50) NOT NULL,
user_profileType int NOT NULL,
user_created date NOT NULL,
user_isActive int NOT NULL,
user_lastlogin time NOT NULL,
typeID int NOT NULL,
FOREIGN KEY(typeID) references usertype)
ENGINE=InnoDB;

17

2.12. Prefers
Relational Mode:

Prefers(userID, categoryID)

Functional Dependencies:

Candidate Keys:

{(userID, categoryID)}

Normal Form:

BCNF

Table Definition:

CREATE TABLE prefers (

userID int,

categoryID int,

PRIMARY KEY(userID, categoryID),

FOREIGN KEY(userID) references user_table,

FOREIGN KEY(categoryID) references category)

ENGINE=InnoDB;

18

2.13. Messages
Relational Mode:

Messages(userID1, userID2, message)

Functional Dependencies:

userID1 userID2 -> message

Candidate Keys:

{(userID1, userID2)}

Normal Form:

BCNF

Table Definition:

CREATE TABLE messages (

userID1 int,

userID2 int,

message varchar(500),

sent_date date,

PRIMARY KEY(userID1, userID2),

FOREIGN KEY(userID1) references user_table (userID),

FOREIGN KEY(userID2) references user_table (userID))

ENGINE=InnoDB;

19

2.14. Friends
Relational Mode:

Friends(userID1, userID2)

Functional Dependencies:

Candidate Keys:

{(userID1, userID2)}

Normal Form:

BCNF

Table Definition:

CREATE TABLE friends (

userID1 int,

userID2 int,

PRIMARY KEY(userID1, userID2),

FOREIGN KEY(userID1) references user_table (userID),

FOREIGN KEY(userID2) references user_table (userID))

ENGINE=InnoDB;

20

2.15. Suggestion
Relational Mode:

Suggestion(suggestionID, suggestion_text, suggestion_date, venueID, userID)

Functional Dependencies:

suggestionID -> suggestion_text suggestion_date venueID userID

Candidate Keys:

{(suggestionID)}

Normal Form:

BCNF

Table Definition:

CREATE TABLE suggestion (

suggestionID int PRIMARY KEY AUTO_INCREMENT,

suggestion_text varchar(250) NOT NULL,

suggestion_date date NOT NULL,

venueID int NOT NULL,

userID int NOT NULL,

FOREIGN KEY(venueID) references venue,

FOREIGN KEY(userID) references user_table)

ENGINE=InnoDB;

21

2.16. PlanToVisit
Relational Mode:

PlanToVisit(userID, venueID)

Functional Dependencies:

Candidate Keys:

{(userID, venueID)}

Normal Form:

BCNF

Table Definition:

CREATE TABLE plan_to_visit (

userID int,

venueID int,

PRIMARY KEY(userID, venueID),

FOREIGN KEY(userID) references user_table,

FOREIGN KEY(venueID) references venue)

ENGINE=InnoDB;

22

2.17. HasFavorite
Relational Mode:

HasFavorite(userID, venueID)

Functional Dependencies:

Candidate Keys:

{(userID, venueID)}

Normal Form:

BCNF

Table Definition:

CREATE TABLE has_favorite (

userID int,

venueID int,

PRIMARY KEY(userID, venueID),

FOREIGN KEY(userID) references user_table,

FOREIGN KEY(venueID) references venue)

ENGINE=InnoDB;

23

2.18. CheckIn
Relational Mode:

CheckIn(checkinID, checkin_date, userID, venueID, reviewID)

Functional Dependencies:

checkinID -> checkin_date userID venueID reviewID

Candidate Keys:

{(checkinID)}

Normal Form:

BCNF

Table Definition:

CREATE TABLE checkin (

checkinID int PRIMARY KEY AUTO_INCREMENT,

checkin_date date NOT NULL,

userID int NOT NULL,

venueID int NOT NULL,

reviewID int NOT NULL,

FOREIGN KEY(userID) references user_table,

FOREIGN KEY(venueID) references venue,

FOREIGN KEY(reviewID) references review)

ENGINE=InnoDB;

24

2.19. Photo
Relational Mode:

Photo(checkinID, photoID, photoFile)

Functional Dependencies:

checkinID photoID -> photoFile

Candidate Keys:

{(checkinID, photoID)}

Normal Form:

BCNF

Table Definition:

CREATE TABLE photo (

checkinID int,

photoID int,

photoFile blob NOT NULL,

PRIMARY KEY(checkinID,photoID),

FOREIGN KEY(checkinID) references checkin)

ENGINE=InnoDB;

25

2.20. Review
Relational Mode:

Review(reviewID, review_rating, review_desc)

Functional Dependencies:

reviewID -> review_rating review_desc

Candidate Keys:

{(reviewID)}

Normal Form:

BCNF

Table Definition:

CREATE TABLE review (

reviewID int PRIMARY KEY AUTO_INCREMENT,

review_rating int NOT NULL,

review_desc varchar(150))

ENGINE=InnoDB;

26

2.21. Comment
Relational Mode:

Comment(commentID, comment_text, comment_date, userID, checkinID)

Functional Dependencies:

commentID -> comment_text comment_date userID, checkinID

Candidate Keys:

{(commentID)}

Normal Form:

BCNF

Table Definition:

CREATE TABLE comment (

commentID int PRIMARY KEY AUTO_INCREMENT,

comment_text varchar(250) NOT NULL,

comment_date date NOT NULL,

userID int NOT NULL,

checkinID int NOT NULL,

FOREIGN KEY(userID) references user_table,

FOREIGN KEY(checkinID) references checkin)

ENGINE=InnoDB;

27

2.22. User_Like
Relational Mode:

User_Like(userID, checkinID)

Functional Dependencies:

Candidate Keys:

{(userID, checkinID)}

Normal Form:

BCNF

Table Definition:

CREATE TABLE user_like (

userID int NOT NULL,

checkinID int NOT NULL,

PRIMARY KEY(userID, checkinID),

FOREIGN KEY(userID) references user_table,

FOREIGN KEY(checkinID) references checkin)

ENGINE=InnoDB;

28

3. Functional Dependencies and Normalization of Tables

All functional dependencies and normal forms are indicated in Relation Schemas in Section
2 of this Project Design Report. First we check whether all our relations are in Boyce-Codd
normal form. We concluded that no decomposition is required.

29

4. Functional Components
	

4.1. Use Cases / Scenarios
In CheckMe Social Network, there will be two types of user, normal user and manager.
Since the admin will have total privileges it will not be included in the use cases. Manager
and Users have both similarities and differences and in order to use the system all user
have to log in into the system selecting the type of the account they want to create.

User

• A user can sign up and register to our system using a unique email, password, and
selecting he is a simple user.

• User can login to the system with the user ID and password.
• User can access his profile page: which includes his first and last name, email

address, birthday, profile picture, gender and address.
• User can change password from profile page.
• User can make his profile private. (Public by default)
• User can update the information of his profile.
• User can make friends from other users.
• User can search for venues based on country, state, or city.
• User can search for venues based on venue category.
• User can select features which the venues must have.
• User can view the venue’s details which include venue name, description, address,

online-offline status, open time, close time and the rating determined by other users.
• User can view previous check-ins at different venues together with the review.
• User can check-in at venues and the check-in includes optional photos, a description

about user’s experience at the venue and a review of the venue which is composed of
a rating from 1-10 and a short description.

• User can send suggestion to the venues.
• Users can add friends.
• User can like or comment check-ins of their friends or people whose profile is public.
• User can have a list of check-ins of his friends and category preferences in

chronological order in his news feed.
• User can send messages to his friends, or to people whose profile is public.
• User can create and save a list of venues he plans to visit in the future.
• User can recommend a venue to his friends.
• User can deactivate his account.

30

Every use-case requires Registration and later Login to access the system. They are omitted for simplicity of the diagram.

31

Manager

• A manager can sign up and register to our system using a unique email, password,
and selecting he is a manger.

• Manager can manage venues.
• Manager can create venues.
• Managers can update the information of the venues he manages which consist of

venue name, description, address, status, open time and close time.
• Manager can delete venues that he is managing from the system.
• Manager can also act as an ordinary user, which means check-in at different venues,

like and comment, add friends, sends messages to them and all other functionalities
that users have.

Every use-case requires Registration and later Login to access the system. They are omitted
for simplicity of the diagram.

32

4.2. Algorithms		

Search Related Algorithm
All users interacting with the application can search through the website using keywords.
The user will firstly have to select what he is looking for. The options to be selected will be
Country, State, City, Venue and People.

The search algorithm will be different for all of these options. For example if user searches
for the country, all the states and cities in those states will be automatically selected.
Therefore, the venues that will be displayed will be those of the country he selected. The
same will be for the state, all the cities of the state will be automatically selected and the
venues displayed will all belong to the state searched from the user. To make searching
process easier for the user, after the first character for every character that the user enters
in the search box the options containing that keyword will be displayed below the text box.

News Feed Algorithm
The data management system will allow user to keep track of check-ins from their favorite
venues or from their favorite categories plus their friends.

In the news feed page there will be two checkboxes called categories and venues which will
be combined with the user’s friend’s check-ins. Besides the checkboxes there will be two
radio buttons called most recent and top. If the user selects most recent the algorithm will
be bases on chronological order, meanwhile if the user selects top we will display them the
posts with more likes and comments combined from the last 24 hours. Likes will affect 70%
of the algorithm and comments the rest 30%.

Rating Algorithm
Users in our system will have different impact in the review rating of the venues. There
will be a simple algorithm to make sure that the rating of the venue is closer to the value it
should really have.

The first issue with the rating algorithm is that the managers will be prevented from rating
the venues they manage, because this is not fair as they would definitely give a big 10 to
their venues. Besides the manager, all users’ will affect the overall rating in different ways.
Users with less than 5 review rating in total will have only 15% weight in the total rating,
users with more than 5 and less than 50 review ratings will have 35% weight in the total
rating and users with more than 50 review ratings will have the remaining 50% of the
weight.

33

Logical Requirements
In order to prevent logical errors inside our system, there will be a number of spots that the
system ought to approach in a sensitive manner. For example the open hours of a specific
venue should be followed carefully.

Two attributes in the venue table are venue_open_time and venue_close_time. Considering
the values of those attributes, the difference between them should be less than 24. For
example a venue cannot open at 16:00pm and close at 15:00pm. However, the open time can
be bigger than the close time. This will mostly occur in night clubs which can open at
20:00pm and close at 06:00am. Such restrictions are made in order to prevent mistakes
while entering the open and close hours of the venue.

Checking in at a venue should be atomic. This implies that the check-in will not be
uploaded to the database if the photos are not already uploaded. We will provide an
algorithm in order to make sure that the photos are uploaded together with the check-in
description.

4.3. Data Structures

For the attribute domains we will use Numeric type, Date type, Time type, Blob type and
other types that are supported from MySQL.

34

5. User Interface Design And Corresponding SQL Statements

5.1. Signup

Inputs: @first_name, @last_name, @email_address, @username, @password,
 @birthday, @gender, @city, @profile_type

Process: The user enter his information to register to CheckMe System. The
information include user’s first name, last name, email, username, password, date
of birth, gender, city and the account type.

SQL Statement:

Registering
INSERT INTO user_table
VALUES(@username, @first_name, @last_name, @email_address, @password,
@birthday, NULL, @gender, @city, @profile_type, NOW(), 1, NOW()

35

5.2. Login

Inputs: @username, @password

Process: The user enter his username and his password to enter to the CheckMe
System.

SQL Statement:

Logging in
SELECT userID, password
FROM user_table
WHERE userID = @username AND password = @password

36

5.3. Friends

Inputs: @username

Process : When a user open the friends screen, all his friends will be listed without
any filter.

@username: Is the username of the user who is currently signed in.

SQL Statement:
SELECT friends.userID2
FROM friends
WHERE friends.userID1 = @username

37

5.4. Messages

Inputs: @username

Process : When a user open the messages screen, all his messages will be displayed

@username: Is the username of the user who is currently signed in.

SQL Statement:
SELECT messages.userID2, messages.text, message.sent_date
FROM messages
WHERE messages.userID1 = @username
GROUP BY messages.userID2

38

5.5. User Preference

Inputs: @username

Process : When a user open the preference screen, all his preferences will be
displayed.

@username: Is the username of the user who is currently signed in.

SQL Statement:
SELECT prefers.categoryID
FROM prefers
WHERE friends.userID = @username

39

5.6. Venue

Inputs: @userID, @venueID

Process: Venue page displays all the information about that Venue and Review’s done about
that Venue. Users can Check In, Review and give Feedback (Suggestion) to the Venue.

@userID: ID of the user signed in.
@venueID: ID of the venue which is being displayed.

SQL Statements:

Loading Venue information

SELECT V.venueName, V.venueDesc, V.venue_picture, V.street_number, V.street_name,
V.venueCreated, V.venue_open_time, V. venue_close_time,
Category.categoryName, City.cityName, S.stateName, Country.countryName

FROM Venue V, Country CO, State S, City CI, Category CA, Cat_Venue
WHERE V.venueID = venueID and V.cityID = CI.cityID and CI.stateID = S.stateID

and S.countryID = CO.countryID and CA.categoryID = Cat_Venue.categoryID
and venueID = Cat_Venue.venueID

Loading Feature information

SELECT F.featureName
FROM Venue V, Feature F
WHERE venueID = V.venueID and F.venueID = venueID

Loading Check In and Review Information

SELECT U.user_first_name, C.checkin_date, C.checkin_like_num, R.review_desc,
P.photoFile

FROM Venue V, CheckIn C, Review R, User U, Photo P
WHERE venueID = V.venueID and C.venueID = venueID and C.reviewID = R.reviewID

and P.checkinID = C.checkinID

40

5.7. Check In

	
	
Inputs: @userID, @venueID, @reviewDesc, @rating, @photoFile, @date

Process: User can check in and add review if he/she wants. If the user does not want to add
review to the check in only check in will be created. Note that this display is not a new
page, it is Venue page when Check In button is pressed.

@userID: ID of the signed in user
@venueID: Venue which is currently being displayed
@reviewDesc, @rating and @photoFile: Input of user to add review
@date: Date of check in which is taken from the server

SQL Statements:

Adding Review (If the User wants to add)
INSERT INTO Review (reviewID, review_rating, review_desc)
VALUES (@reviewID, @rating, @reviewDesc)

Adding Check In
INSERT INTO CheckIn(checkinID, checkin_date, userID, venueID, reviewID)
VALUES (@checkInID, @date, @userID, @venueID, @reviewID)
	
	

41

5.8. Suggestion

	
Inputs: @userID, @venueID, @text, @date

Process: User can give suggestions to the Venue which will be only shown to Venue
managers, it won’t be public. Note that this display is not a new page, it is Venue page
when Feedback button is pressed.

@userID: ID of the signed in user
@venueID: Venue which is currently being displayed
@text: Input of user to add suggestion
@date: Date of suggestion which is taken from the server

SQL Statements:

Adding Suggestion
INSERT INTO Suggestion (suggestionID, suggestion_text, suggestion_date, venueID,

 userID)
VALUES (@suggestionID, @text, @date, @venueID, @userID)
	

42

5.9. Comment

	
	
Inputs:	@userID,	@checkInID,	@text,	@date	
	
Process:	User	can	comment	on	check-ins	of	people	which	includes	only	a	text.	Note	that	this	display	can	
be	shown	in	user	profile	page,	home	screen	and	venue	profile;	this	is	not	a	separate	page.	
	
@userID:	ID	of	the	signed	in	user	
@checkInID:	Check	in	to	comment	on	
@text:	Input	of	user	to	add	comment	
@date:	Date	of	comment	which	is	taken	from	the	server	
	
	
SQL	Statements:	
	
Adding	Comment	
INSERT	INTO	Comment	(commentID,	comment_text,	comment_date,	userID,	checkInID)	
VALUES		(@commentID,	@text,	@date,	@userID,	@checkInID)	

43

5.10. User

	
	
Inputs: @userProfileID, @userID, @messageText

Process: User profile page displays all the information about that User and Review’s he/she
has done. Currently signed in User can add viewed person as a friend, send a message and
like/comment on his/her check-ins.

@userID: ID of the user signed in.
@userProfileID: ID of the venue which is being displayed.

SQL Statements:

Loading User information

SELECT U.user_first_name, U.user_last_name, U.user_picture, U.user_created
FROM User U
WHERE userProfileID = U.userID

Loading Check In and Review Information

SELECT U. user_first_name, C.checkin_date, C.checkin_like_numbers, R.review_desc,
P.photoFile

FROM CheckIn C, Review R, User U, Photo P
WHERE userProfileID = U.userID and userProfileID = C.userID and C.reviewID =

R.reviewID and P.checkinID = C.checkinID

44

Loading Friends Information

SELECT U1.user_picture
FROM User U1, (SELECT F.userID2 as friendID

FROM User U, Friends F
WHERE userProfileID = U.userID and userProfileID =
F.userID1)
as friendList

WHERE U1.userID = friendList.friendID

SELECT COUNT(*)
FROM User U, Friends F
WHERE userProfileID = U.userID and userProfileID = F.userID1

5.11. PlanToVisit

Inputs: @username

Process : When a user open the
PlanToVisit screen, all the venues
that the user has planned to visit in a
near future will be displayed.

@username: Is the username of the
user who is currently signed in.

SQL Statement:
SELECT PlanToVisit.venueID
FROM PlanToVisit
WHERE PlanToVisit.userID = @username

45

5.12. HasFavorite

Inputs: @username

Process : When a user open the hasFavorite screen, all the favorite venues of the
user will be displayed on the screen. User than can remove any of the them if he/she
wants.

@username: Is the username of the user who is currently signed in.

SQL Statement:
SELECT HasFavorite.venueID
FROM HasFavorite
WHERE HasFavorite.userID = @username

46

5.13. Edit User Profile

Inputs: @username, @firstname, @lastname, @birthday, @gender, @email, @city

Process : When a user open the Edit User Profile screen, the user will be available
to change his basic information. He cannot edit the important information such as
username, or others.

@username: Is the username of the user who is currently signed in.
@firstname: The new value of the first name
@lastname: The new value of the last name
@birthday: The new value corresponding to the birthday of the user.
@gender: Saves the new gender of the user.
@email: Save the new email of the user.
@city: Save the new city of the user.

SQL Statement:
UPDATE user_table
SET user_firstName = @firstname, user_lastname = @lastname,
user_birthday = @birthday, user_gender = @gender, user_email = @email,
city = @city
WHERE user_table.userID = @username

47

5.14. Edit Venue Profile

Inputs: @username, @venueID, @venueName, @venueDesc, @streetNumber,
@streetName, @open_time, @close_time, @picture

Process : When a manager open Edit Profile of the Venue he will have the
opportunity to change the information of the venue.
@username: Is the username of the user who is currently signed in.
@venueID: Is the ID if the venue that the manager is editing.
@venueName: The new value of the venue name
@venueDesc: The new value of the venue description
@streetNumber: The new value corresponding to the venue street number
@streetName: The new value corresponding to the venue street name
@open_time: Save the new open time of the venue.
@close_time: Save the new close time of the venue.
@picture: Save the new picture for the venue profile.

SQL Statement:
UPDATE venue
SET venueName = @venueName, venueDesc = @venueDesc,
street_number = @streetNumber, street_name = @streetName,
venue_open_time = @open_time, venue_close_time = @close_time,
venuePicutre = @ picture
WHERE venueID = @venueID

48

5.15. Users Rating To Venue

Inputs: @username, @venueID

Process : When a manager checks the reviews that the users have written for that
venue he has opened.

@username: Is the username of the user who is currently signed in.
@venueID: Is the ID if the venue that the manager has opened

SQL Statement:
SELECT userID, review_rating, review_desc
FROM checkin natural join review
WHERE venueID = @venueID

49

5.16. Search for a Venue

Inputs: @username, @countryName, @stateName, @cityName, @venueName

Process : The process of searching for a venue based on the keywords given in the
boxes provided in the system.

@username: Is the username of the user who is currently signed in.
@countryName: The box to query entering the name of the country
@stateName: The box to query entering the name of the state
@cityName: The box to query entering the name of the city
@venueName: The box to query entering the name of the venue

SQL Statement:
SELECT venueName, venueDesc, venueAddress, venue_open_time,

 venue_close_time
FROM venue natural join city natural join state natural join country
WHERE (
 countryName likes @countryName or @countryName IS NULL

)
AND (
 stateName likes @stateName or @stateName IS NULL

)
AND (
 cityName likes @cityName or @cityName IS NULL

)
AND (
 venueName likes @venueName or @venueName IS NULL

)

50

6. Advance Database Components

6.1. Views
Manager Suggestion View
This view restricts the manager to access user names that sent suggestions.

create view manager_suggestion as
select suggestionID, suggestion_text, suggestion_date, venueID
from suggestion

Manager Review View
This view restricts the manager to access user names that wrote the reviews.

create view manager_review as
select reviewRating, reviewDescription, checkin_date, venueID
from checkin natural join review

6.2. Stored Procedures		

The most important operations on our system will be adding venues and check-ins at
venues. Therefore, we can use some stored procedures to avoid using long queries all the
time.

This procedure will be used to add check-ins to the database.
Create Procedure addCheckin

(@checkinID int, @checkin_date date, @userID int, @venueID int, @reviewID
int)

As
Begin
 Insert Into checkin

Values (@checkinID, @checkin_date, @userID, @venueID, @reviewID)
End

This procedure will be used to add messages to the database.
Create Procedure addVenue

(@userID1 int, @userID2 int, @message varchar(500), @sent_date date)
As
Begin
 Insert Into messages

Values (@userID1, @userID2, @message, @sent_date)
End

51

This procedure will be used to add venues to the database.
Create Procedure addUser

(@userID int, @user_firstName varchar(50), @user_lastName varchar(50), @user_email
varchar(100), @user_password varchar(30), @user_birthdate date, @user_pic blob,
@user_gender character(1), @city varchar(50), @user_profileType int, @user_created date,

 @user_isActive int, @user_lastlogin time, @typeID int)
As
Begin
 Insert Into user_table

Values (@venueID, @venueName, @venueDesc, @street_number, @street_name,
 @venueCreated, @venueModified, @venue_open_time, @venue_close_time,
 @venueStatus int, @cityID, @managerID, @cityID, @managerID)

End
This procedure will be used to display the number of friends in user’s profile
Create Procedure countFriends as
Begin

(SELECT U.userID, count(*)
FROM user_table U, friends F
WHERE U.userID = F.userID1
GROUP BY U.userID)

End

6.3. Profile Reports		

Total number of check-ins uploaded by each user:
SELECT C.userID, count(*)
FROM checkin C
GROUP BY C.userID;

Total number of suggestions sent from each user:
SELECT S.userID, count(*)
FROM suggestion S
GROUP BY S.userID;

Total number of venues for each category
SELECT CV.categoryID, CV.categoryName, count(*)
FROM cat_venue CV
GROUP BY CV.categoryID, CV.categoryName;

Total number of venues for each city
SELECT CV.cityID, count(*)
FROM city_venue CV
GROUP BY CV.cityID;

52

Total number of planToVisit venues for each user
SELECT C.userID, count(*)
FROM PlanToVisit P
GROUP BY P.userID;

Total number of planToVisit venues from each user
SELECT P.userID, count(P.venueID)
FROM PlanToVisit P
GROUP BY P.userID;

Total number of planned visits for all venues
SELECT P.venueID, count(P.userID)
FROM PlanToVisit P
GROUP BY P.venueID

6.4. Triggers		

• When a check-in is deleted from system, review, photos and comments related with
this check-in are also deleted.

• When a new category is inserted the total number will be increased and when a
category is deleted the total number will be decreased.

• When a user likes or dislikes a check-in the corresponding number of total likes will
be updated and shown in the check-in.

• When a user becomes friend with someone else the number of the friends in his
profile will increase and when he unfriends someone this number will decrease.

• When a user gives a rating together with the check-in it will affect the overall rating
of the venue according to our algorithm.

• When a user adds a check-in, it is shown in the user’s profile, venue’s profile and his
friend’s news feed.

• When a user adds to his plan to visit list a particular venue it will automatically
increment the total number of plannedToVisit venues in the profile of the user and
when the user checks in at one of the venues in his plannedToVisit list it will
automatically be removed from there.

• When a user deactivates the account all the information such as suggestions,
comments, likes, check-ins, messages will be removed from the system.

• When a manager deletes a venue all the information regarding that venue such as
venue profile, check-ins, suggestions etc. will be removed from the system.

• When a manger changes the status of the venue to offline, no other user besides the
manager can view the venue’s profile and the check-ins done there.

• When a user sends a message, the message count in his friends profile and it will
remain like that until the friend responds.

• When a user makes a review about a venue, it will increment the number of reviews
this user has made which will be later used in the algorithm about the venue rating.

53

6.5. Constraints

• To enter the system a registration is required.
• The system cannot be accessed without logging in.
• All IDs of the system cannot be null.
• Users can only log in using their username and password.
• A user can check-in multiple times in a venue, but each check-in has only review.
• There cannot be two same name categories.
• A venue cannot have two same name features.
• The suggestions are seen only from manager of the venue.
• Users can only see profiles of their friends or of people whose profile is public.

• Users can filter the data based on the available resources such as country, state, city

and category.
• Users can edit only their profiles.
• Users cannot remove comments of their friends from their check-ins.
• A venue cannot be managed by more than one manager.
• Deactivating the account and registering again with the same username and email

will not preserve the old information.

7. Implementation Plan

For the implementation plan we are planning to use MySQL Server at data layer in our
project as database management system. Furthermore, for the logic and user interface of
the project we are planning to code it in PHP and a use a small amount of JavaScript or
Node.js. The core of our system will be using MySQL and phpMyAdmin.

